(Taha) $\left\{\mathrm{d}_{\mathrm{L}} \mathrm{b}=\right\}$ \& $\{\mathrm{wAw}\}\{\mathrm{D} \pm \mathrm{E}\}$

 Taha wAw English Letters

 Taha wAw English Letters}

\{Taha\}
Using Geometric Letters

$$
\{d=b=\}-\{=b=b\}
$$

\{Taham\}
Using Mirrored Geometric Letters

$$
\left\{d _\bar{L}=\square\right\}-\{\square=\square \perp b\}
$$

$$
\begin{gathered}
\text { \{wAw \} } \\
\text { Using Latin Matching Letters }
\end{gathered}
$$

$$
(7,3,2) \equiv\{c, q, x\} \equiv(\tau ، \varepsilon ، \&)
$$

Contents

1- Geometric Numerals and Letters and Latin Letters 1
2- Geometric Letters and English Letters 3
3- Geometric Movements and English Vowels 4
4- Geometric Marks and English Letters 5
Dr. Eng. Ziad Amer Hammoodi
$\{\mathcal{T} a \mathfrak{A}\}\} \&\{w \mathcal{A} w\}$, writing \mathcal{A} rabic way，The Universal $\mathcal{M e t h o d}$ of Writing

1－Geometric Numerals and Letters and Latin Letters

The $28 \mathcal{A}$ rabic \mathcal{A} bjad Cetters were used initially to represent decimal numerals as well，and were grouped into 3 groups of 9 letters each for units，tens and hundreds．The remaining last letter $(\dot{\varepsilon})$ was assigned to one thousand．

A historical match exists between Abjad words（أبجد ، كلمن ، قرشت）and the Latín Cetters
 correspond to（ s, c ）．This is due to the fact that $\{\mathrm{sh}, \mathrm{j}\}$ were initially missing in Latin letters．

By inserting the two Arabic letters（ح）among Latin letters，after the sequence（KLMN），this match becomes perfect in order and position．This is not a matter of coincidence．Additionally， we notice that the last 6 letters are considered additives in both Arabic and Latin Letters．

Latin letters were ready to join the club of decimal numerals long time ago as the Greek had done by adding three Phoenicians letters to the Greek Language in order to enjoy the old Arabic Decimal System few centuries ago instead of using the primitive Roman System．

سعفص				كلمن				حطي			ز هو			أبجد			
	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
97	昍	7 l	E］	$5 \square$	$4 \square$	ヨ	こర	10	9	日	7	5	5	4	\exists	己	
ص	ف	ε	س	ن	「	」	5	ي	b	τ	j	9	－	$د$	ج	ب	¢
P	O	ε	τ	N	M	L	K	J	I	H	G	F	E	D	C	B	A
TENS（عشرات）									UNITS（ آحاد）								

\mathcal{A} bjad Letters	ضظغ			ثخذ			قرشت			
Serial numbers	28	27	26	25	24	23	22	21	20	19
Decimal values	1 10］	9 5	昭	7 CL	6，	5 5］	प	习	20］	107
Abjad Numerals	غ	ظ	ض	ذ	$\dot{\text { ̇ }}$	$ث$	$ت$	ش	J	ق
LLatín Numerals	Z	Y	X	W	V	U	T	S	R	Q
Decimal Units	ألف	HUNDREDS（منّات）								

$\mathcal{T a}$ e of \mathcal{M} atching \mathcal{A} rabic $\mathcal{A b j a d}$ Letters，Latin Letters and $\mathcal{A r a b i c} \mathcal{N} u m e r a l s$
جدول مطابقة الحروف العربية الأبجدية والحروف اللاتينية والأرقام العربية

When Al Khwarizmi，the author of the first Algebra book，introduced the Zero in the Arabic Decimal System，the first nine letters with the Zero became enough to write any number by assigning a weight for a numeral depending on its position．

Therefore，A new set of 10 shapes for numerals including Zero called Arqam was used instead of letters and the new Arabic Decimal System became mature enough to spread all over the world with these Arabic numerals which are called（Les Chifres Arabes）in French．

9	8	7	6	5	4	3	2	1	0
9	8	7	6	5	4	\exists	2	1	\square

The Arabic Geometric $\mathcal{N} u m e r a l s$ الأرقام العربية الهندسية
The Arabic Geometric Numerals are exactly the same as the universal Arabic numerals before rounding the corners of right angles．The shapes of these numerals are derived from the number of equal sides or angles of two joint squares．Smaller sides were added for certain numerals（ 2．5．5．，）to distinguish them from certain Geometric letters．

Similarly to Geometric Numerals， 13 basic Geometric letters（أح، عس، صم، طرد، وهلك）based on the simple shape of square are shown below．These letters are called the un－pointed letters．

The Arabic Geometric Gasic Cetters الحروف العربية الهندسية الأساسية
Additional pointed letters can be made by adding one，two or three points above or below the basic letters in order to have the complete set of corresponding Geometric Abjad letters．

ضظغ			ثخذ			قرشت				سعفص				كلمن				حطي			هو			أبجد			
$\dot{\varepsilon}$	ظ	ض	ذ	$\dot{\text { ¢ }}$	\star	－	ش	\checkmark	ق	\sim	ف	ε	س	$\dot{\sim}$	P	Ј	5	ي	b	ح	j	9	\bigcirc	$د$	ج	ب	\＆
$\dot{\text { ᄃ }}$	b	$\dot{\text { ri}}$	b	$\dot{\text { ̇ }}$	」	ت	ப	」	ة	\square	－	ᄃ	\sqcup	－	\square		5	，	b	コ	\dot{j}	7	－	5	？	ب	」

The Arabic Geometric Abjad Cetters
These Geometric letters can be enhanced further to contain additional other forms of Arabic letters as Alif（ f ）at the beginning of a word instead of Hamzah（ $£$ ）or Taa Marbootah（ a ）or the isolated or final Haa（d）at the end of a word instead of $\mathrm{Haa}(\mathrm{Z})$ at the beginning and in the middle of a word or to include Latin letters missing in Arabic as（g，p，v，ch）．

Therefore，we can conclude that the number of sides in each of the first six Arabic Geometric letters（ $\mathrm{g}, \mathrm{d}, \mathrm{b}, \mathrm{J}, \mathrm{f}$ ）is equal to their corresponding numeral．Additionally，there will be minor simple geometric horizontal and vertical shapes for short and long vowels and other marks used as attributes to these Geometric Letters．

2－Geometric Letters and English Letters

\mathcal{A} bjad Letter		ضظغ	ثخذ	قرشت	سعفص	كلمن	حطي	هوز	ابجد
Enhanced Letters		غ ظ	ذ i ث	ق ر ش ت	ט	ن	¢	j و	ب
G フֶ ¢ ¢ ¢ ¢	回	¢் 女 ¢ ¢	ら ذ		п வ́ ᄃ ப	ப ¢ ل 5	」 ${ }^{\text {b }}$	j 9 Z	بر
M ¢ ¢ ¢ ᄂ ق	回	う ¢ ¢ п	え̇ 亡் ட்		п வ่ コ ப	ட் ロ L 己	ᄂ d ᄃ		」 ¢ ¢ L
E c h v p g 		$\begin{array}{lll} \mathrm{g} & \mathrm{D} & \mathrm{D} \\ \mathrm{~h} & \mathrm{~h} & \end{array}$	$\begin{array}{lll} \mathrm{d} & \mathrm{k} & \mathrm{t} \\ \mathrm{~h} & \mathrm{~h} & \mathrm{~h} \end{array}$	$\begin{array}{llll} \mathrm{t} & \mathrm{~s} & \mathrm{r} & \mathrm{~K} \\ \mathrm{~h} & & \end{array}$	S f q s	n ml k	y Tc	z w h	d j b x

Matching Table of Arabic，Geometric，Mirrored Geometric and English letters

> جدول مطابقة الحروف العربية والهندسية والهندسية العكسية والإنجليزية

The Third Abjad letter（ج）$\{\mathrm{j}\}$ is pronounced $\{\mathrm{g}\}$ in Egypt and Greece．Therefore，the Greek letter Gamma and the Latin Letter（C）pronounced both as $\{\mathrm{g}\}$ were used instead of $\{\mathrm{j}\}$ and the Alphabet name replaced the Abjad name in both cases．

For matching English Letters with Geometric letters，the letter（c）can be replaced by（k，K）or s） as in（circle）$\{$ sErkil $\}$ and（come）$\{\mathrm{Kam}\}$ and can be assigned to（ τ ）．The letter（ q ）can be replaced by（k or K）as in（queen of Qatar）\｛kwIn ov KaTar\} and can be assigned to (ع).

The letter（x）can be replaced by（ks）as in（taxi）\｛taksi\} or by (gz) as in (exit) \{egzit\} and can be assigned to（ ε ）．Hidden Hamzah（ ε ）is encountered at the beginning of English words as in the word（Apple or Africa）．The letter（A）is a short vowel associated with the Hidden Hamzah $\{x a\}$ ．

The native Arabic letters，missing in Latin Letters（ذ），ذ، خ، غ، ش، ش، had been enhanced in English by using the letter（h）as in（dh，kh，gh，sh，th）in addition to（ch， $\mathbf{p h}$ ）．The native Latin letters（ \mathbf{g} ， \mathbf{p}, \mathbf{v} ）are enhanced in Geometric letters by using additional point．

The Arabic light sound letters（د، ك، س، ت، ذ）can be matched with the small Latin letters \｛d，k，s，
 letters as in $\{\mathbf{D}, \mathbf{K}, \mathbf{S}, \mathbf{T}, \mathbf{D h}\}$ ．

All other Arabic letters are considered light sound letters and can be matched with small Latin letters．Although some sounds may change depending on vowels as for（L）in（بسمِ الله）\｛bismi －IlAhi\} and (ألله أكبر) \{xallAhu xakbar\} which is light after Kasrah and heavy after Fathah.
$\{\mathcal{T} a \mathfrak{A}\}\} \&\{w \mathcal{A} w\}$, writing \mathcal{A} rabic way，The Universal $\mathcal{M e t h o d ~ o f ~ W r i t i n g ~}$

3－Geometric Movements and English Vowels

Vowel Letters	Short Vowels（حركات）				
English	Offah	Kashah	Kasrah	Dummah	Fathah
Arabic Classic	أُفِّ		كـــسرَ		
			，	$\stackrel{\square}{\text { e }}$	－
Arabic Geometric	コニロ்ธ்」	В－コப＝5	$\square_{=~}^{\text {a }}$－ 5	В＝ロロ＝ர்	る＝コت」
	\square	m	$=$	\pm	$=$
English wAw	\｛xoffah	\｛kascah\}	\｛kasrah\}	\｛Dummah \}	\｛fatcah \}
	O	e	i	u	a
Mirrored Geometric		こ＝பட＝■	こ二匕ヒ＝${ }^{\text {a }}$	「்ㅡㅡㅁ＝6	ロ்＝̈̈ᄃ＝■
	\pm	m	＝	\pm	$=$
Vowel Letters	Long Vowels（حركات）				
English	Mad Off	Mad Kash	Mad Kasr	Mad Dum	Mad Fath
Arabic Classic					
			ي	9	1
Arabic Geometric		コப＝5	－ $4=5$ ¢	ロニர் ל＝ロ	号
	\pm	ヨ	T	\square	1
English wAw	\｛mad Off	\｛mad kasc\}	\｛mad kasr\}	\｛mad Dum	\｛mad fatc $\}$
	O	E	I	U	A
Mirrored Geometric	ㅁ＝Ц 亡ャロ்ன்	ロ＝」 こ＝பธ	ロ＝」 こ＝பヒ	$\square=\llcorner\dot{\Pi}=\square$	ロ＝ム ்ெ
	$\stackrel{\square}{\square}$	\underline{E}	T	\pm	\perp

Matching Table of Arabic Letters Movements \＆English Vowels مطابقة حركات حروف اللغة العربية و حروف العلة الإنجليزية
$\{\mathcal{T} a \hbar a\} \&\{w \mathcal{A} w\}$, writing \mathcal{A} rabic way，The Universal $\mathcal{M e t h o d}$ of Writing

4－Geometric Marks and English Letters

Arabic Marks	Tanween Marks（علامات التنـويـن ）		
English	Tanween $\mathcal{K a s r}$	Tanween Dum	Tanween Fath
Arabic Classic		تَــنـو يـن	تَــنـويـن فـنــنـح
	\bigcirc	\％	E
Arabic Geometric		ロニர் ${ }^{\text {－}}$	تٌ
	三		三
English wAw	\｛tanwIn kasr\}	\｛tanwIn Dum	\｛tanwIn fatc $\}$
	in	un	an
Mirrored Geometric		$\ddot{L}=\dot{L} 巳_{T} \dot{L} \quad \dot{\Pi}=\square$	
	三	쁘	三
Arabic Marks	Other Marks（علامات أخرى ）		
English	Sukoon	Shaddah	Maddah
Arabic Classic	سـُكــون	شــــنـ	0 O－
	$\dot{\square}$	\％	\sim
Arabic Geometric	－¢ 5 ¢	コ＝ム ${ }^{\text {a }}$	
	－	$\underline{\sim}$	$\underline{\square}$
English wAw	sukUn	shaddah	maddah
			\sim
Mirrored Geometric	ப뜨コ누 －		$\begin{gathered} \text { ロ=ムム= } \overline{\text { n }} \\ \text { n } \end{gathered}$

Matching Table of Arabic Letters Marks \＆English Letters
جدول مطابقة علامات حروف اللغة العربية وحروف اللغة الإنجليزية

